Hausdorff operators in H^{p} spaces, $0<p<1$

Elijah Liflyand joint work with Akihiko Miyachi

Bar-Ilan University
June, 2018

History

For the theory of Hardy spaces $H^{p}, 0<p<1$

the Hausdorff operators turn out to be a very effective testing area, in dimension one and especially in several dimensions.

History

For the theory of Hardy spaces $H^{p}, 0<p<1$

the Hausdorff operators turn out to be a very effective testing area, in dimension one and especially in several dimensions.

- After publication of the paper by L-Móricz in 2000, Hausdorff operators have attracted much attention.

History

For the theory of Hardy spaces $H^{p}, 0<p<1$

the Hausdorff operators turn out to be a very effective testing area, in dimension one and especially in several dimensions.

- After publication of the paper by L-Móricz in 2000, Hausdorff operators have attracted much attention.
- In contrast to the study of the Hausdorff operators in $L^{p}, 1 \leq p \leq \infty$, and in the Hardy space H^{1}, the study of these operators in the Hardy spaces H^{p} with $p<1$ holds a specific place and there are very few results on this topic.

History

For the theory of Hardy spaces $H^{p}, 0<p<1$

the Hausdorff operators turn out to be a very effective testing area, in dimension one and especially in several dimensions.

- After publication of the paper by L-Móricz in 2000, Hausdorff operators have attracted much attention.
- In contrast to the study of the Hausdorff operators in $L^{p}, 1 \leq p \leq \infty$, and in the Hardy space H^{1}, the study of these operators in the Hardy spaces H^{p} with $p<1$ holds a specific place and there are very few results on this topic.
- In dimension one, after Kanjin, Miyachi, and Weisz, more or less final results were given in a joint paper by L-Miyachi.

History

For the theory of Hardy spaces $H^{p}, 0<p<1$

the Hausdorff operators turn out to be a very effective testing area, in dimension one and especially in several dimensions.

- After publication of the paper by L-Móricz in 2000, Hausdorff operators have attracted much attention.
- In contrast to the study of the Hausdorff operators in $L^{p}, 1 \leq p \leq \infty$, and in the Hardy space H^{1}, the study of these operators in the Hardy spaces H^{p} with $p<1$ holds a specific place and there are very few results on this topic.
- In dimension one, after Kanjin, Miyachi, and Weisz, more or less final results were given in a joint paper by L-Miyachi.
- The results differ from those for $L^{p}, 1 \leq p \leq \infty$, and H^{1}, since they involve smoothness conditions on the averaging function, which seem unusual but unavoidable.

Definitions

Given a function ϕ on the half line $(0, \infty)$, the Hausdorff operator \mathcal{H}_{ϕ} is defined by

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \frac{\phi(t)}{t} f\left(\frac{x}{t}\right) d t, \quad x \in \mathbb{R} .
$$

Definitions

Given a function ϕ on the half line $(0, \infty)$, the Hausdorff operator \mathcal{H}_{ϕ} is defined by

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \frac{\phi(t)}{t} f\left(\frac{x}{t}\right) d t, \quad x \in \mathbb{R}
$$

- If $1 \leq p \leq \infty$, an application of Minkowski's inequality gives

$$
\left\|\mathcal{H}_{\phi} f\right\|_{L^{p}(\mathbb{R})} \leq \int_{0}^{\infty}|\phi(t)|\left\|\frac{1}{t} f\left(\frac{\dot{t}}{t}\right)\right\|_{L^{p}(\mathbb{R})} d t=A_{p}(\phi)\|f\|_{L^{p}(\mathbb{R})}
$$

where

$$
A_{p}(\phi)=\int_{0}^{\infty}|\phi(t)| t^{-1+1 / p} d t
$$

Thus, \mathcal{H}_{ϕ} is bounded in $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$, provided $A_{p}(\phi)<\infty$.

Definitions

Given a function ϕ on the half line $(0, \infty)$, the Hausdorff operator \mathcal{H}_{ϕ} is defined by

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \frac{\phi(t)}{t} f\left(\frac{x}{t}\right) d t, \quad x \in \mathbb{R}
$$

- If $1 \leq p \leq \infty$, an application of Minkowski's inequality gives

$$
\left\|\mathcal{H}_{\phi} f\right\|_{L^{p}(\mathbb{R})} \leq \int_{0}^{\infty}|\phi(t)|\left\|\frac{1}{t} f(\dot{\bar{t}})\right\|_{L^{p}(\mathbb{R})} d t=A_{p}(\phi)\|f\|_{L^{p}(\mathbb{R})}
$$

where

$$
A_{p}(\phi)=\int_{0}^{\infty}|\phi(t)| t^{-1+1 / p} d t
$$

Thus, \mathcal{H}_{ϕ} is bounded in $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$, provided $A_{p}(\phi)<\infty$.

- Notice that the above simple argument for using Minkowski's inequality cannot be applied to $H^{p}(\mathbb{R})$ with $p<1$.

Definitions

Given a function ϕ on the half line $(0, \infty)$, the Hausdorff operator \mathcal{H}_{ϕ} is defined by

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \frac{\phi(t)}{t} f\left(\frac{x}{t}\right) d t, \quad x \in \mathbb{R} .
$$

- If $1 \leq p \leq \infty$, an application of Minkowski's inequality gives

$$
\left\|\mathcal{H}_{\phi} f\right\|_{L^{p}(\mathbb{R})} \leq \int_{0}^{\infty}|\phi(t)|\left\|\frac{1}{t} f\left(\frac{\dot{t}}{t}\right)\right\|_{L^{p}(\mathbb{R})} d t=A_{p}(\phi)\|f\|_{L^{p}(\mathbb{R})}
$$

where

$$
A_{p}(\phi)=\int_{0}^{\infty}|\phi(t)| t^{-1+1 / p} d t
$$

Thus, \mathcal{H}_{ϕ} is bounded in $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$, provided $A_{p}(\phi)<\infty$.

- Notice that the above simple argument for using Minkowski's inequality cannot be applied to $H^{p}(\mathbb{R})$ with $p<1$.
- We shall simply say that \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$ if \mathcal{H}_{ϕ} is well-defined in a dense subspace of $H^{p}(\mathbb{R})$ and if it is extended to a bounded operator in $H^{p}(\mathbb{R})$.

Results

- Theorem A. (Kanjin) Let $0<p<1$ and $M=[1 / p-1 / 2]+1$. Suppose $A_{1}(\phi)<\infty, A_{2}(\phi)<\infty$, and suppose $\widehat{\phi}$ (the Fourier transform of the function ϕ extended to the whole real line by setting $\phi(t)=0$ for $t \leqq 0)$ is a function of class $C^{2 M}$ on \mathbb{R} with $\sup _{\xi \in \mathbb{R}}|\xi|^{M}\left|\widehat{\phi^{(M)}}(\xi)\right|<\infty$ and $\sup _{\xi \in \mathbb{R}}|\xi|^{M}\left|\widehat{\phi}^{(2 M)}(\xi)\right|<\infty$. Then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.

Results

- Theorem A. (Kanjin) Let $0<p<1$ and $M=[1 / p-1 / 2]+1$. Suppose $A_{1}(\phi)<\infty, A_{2}(\phi)<\infty$, and suppose $\widehat{\phi}$ (the Fourier transform of the function ϕ extended to the whole real line by setting $\phi(t)=0$ for $t \leqq 0)$ is a function of class $C^{2 M}$ on \mathbb{R} with $\sup _{\xi \in \mathbb{R}}|\xi|^{M}\left|\widehat{\phi^{(M)}}(\xi)\right|<\infty$ and $\sup _{\xi \in \mathbb{R}}|\xi|^{M}\left|\widehat{\phi}^{(2 M)}(\xi)\right|<\infty$. Then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.
- Theorem B. (L-Miyachi) Let $0<p<1, M=[1 / p-1 / 2]+1$, and let ϵ be a positive real number. Suppose ϕ is a function of class C^{M} on $(0, \infty)$ such that

$$
\left|\phi^{(k)}(t)\right| \leqq \min \left\{t^{\epsilon}, t^{-\epsilon}\right\} t^{-1 / p-k} \quad \text { for } \quad k=0,1, \ldots, M
$$

Then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.

Results

- An immediate corollary of Theorems A and B is the following

Results

- An immediate corollary of Theorems A and B is the following
- Theorem C. Let $0<p<1$ and $M=[1 / p-1 / 2]+1$. If ϕ is a function on $(0, \infty)$ of class C^{M} and $\operatorname{supp} \phi$ is a compact subset of $(0, \infty)$, then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.

Results

- An immediate corollary of Theorems A and B is the following
- Theorem C. Let $0<p<1$ and $M=[1 / p-1 / 2]+1$. If ϕ is a function on $(0, \infty)$ of class C^{M} and $\operatorname{supp} \phi$ is a compact subset of $(0, \infty)$, then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.
- It is noteworthy that the above theorems impose certain smoothness assumption on ϕ. In fact, this smoothness assumption cannot be removed since we have the next theorem.

Results

- An immediate corollary of Theorems A and B is the following
- Theorem C. Let $0<p<1$ and $M=[1 / p-1 / 2]+1$. If ϕ is a function on $(0, \infty)$ of class C^{M} and $\operatorname{supp} \phi$ is a compact subset of $(0, \infty)$, then \mathcal{H}_{ϕ} is bounded in $H^{p}(\mathbb{R})$.
- It is noteworthy that the above theorems impose certain smoothness assumption on ϕ. In fact, this smoothness assumption cannot be removed since we have the next theorem.
- Theorem D. (L-Miyachi) There exists a function ϕ on $(0, \infty)$ such that ϕ is bounded, $\operatorname{supp} \phi$ is a compact subset of $(0, \infty)$, and, for every $p \in(0,1)$, the operator \mathcal{H}_{ϕ} is not bounded in $H^{p}(\mathbb{R})$.

Special atomic decomposition - Miyachi

Definition. Let $0<p \leqq 1$ and let M be a positive integer. For $0<s<\infty$, we define $\mathcal{A}_{p, M}(s)$ as the set of all those $f \in L^{2}\left(\mathbb{R}^{n}\right)$ for which $\widehat{f}(\xi)=0$ for $|\xi| \leqq \frac{1}{s}$ and

$$
\left\|D^{\alpha} \widehat{f}\right\|_{L^{2}} \leqq s^{|\alpha|-\frac{n}{p}+\frac{n}{2}}, \quad|\alpha| \leq M
$$

We define $\mathcal{A}_{p, M}$ as the union of $\mathcal{A}_{p, M}(s)$ over all $0<s<\infty$. Lemma. Let $0<p \leqq 1$ and M be a positive integer satisfying $M>\frac{n}{p}-\frac{n}{2}$. Then there exists a constant $c_{p, M}$, depending only on n, p and M, such that the following hold.
(1) $\quad\left\|f\left(\cdot-x_{0}\right)\right\|_{H^{p}\left(\mathbb{R}^{n}\right)} \leqq c_{p, M}$ for all $f \in \mathcal{A}_{p, M}$ and all $x_{0} \in \mathbb{R}^{n}$;
(2) Every $f \in H^{p}\left(\mathbb{R}^{n}\right)$ can be decomposed as $f=\sum_{j=1}^{\infty} \lambda_{j} f_{j}\left(\cdot-x_{j}\right)$, where $f_{j} \in \mathcal{A}_{p, M}, x_{j} \in \mathbb{R}^{n}, 0 \leqq \lambda_{j}<\infty$, and
$\left(\sum_{j=1}^{\infty} \lambda_{j}^{p}\right)^{\frac{1}{p}} \leqq c_{p, M}\|f\|_{H^{p}\left(\mathbb{R}^{n}\right)}$, and the series converges in $H^{p}\left(\mathbb{R}^{n}\right)$.
If $f \in H^{p} \cap L^{2}$, then this decomposition can be made so that the series converges in L^{2} as well.

Recent attempts

- Weisz: in a product space, not sharp.

Recent attempts

- Weisz: in a product space, not sharp.
- Dashan Fan and his collaborators: observing that in dimension one the Hausdorff operator \mathcal{H}_{ϕ} can be rewritten in a symmetric form

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \phi\left(\frac{x}{t}\right) \frac{f(t)}{t} d t, \quad x \in \mathbb{R}
$$

Recent attempts

- Weisz: in a product space, not sharp.
- Dashan Fan and his collaborators: observing that in dimension one the Hausdorff operator \mathcal{H}_{ϕ} can be rewritten in a symmetric form

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \phi\left(\frac{x}{t}\right) \frac{f(t)}{t} d t, \quad x \in \mathbb{R}
$$

- they study the following multidimensional operator

$$
\int_{\mathbb{R}^{n}}|u|^{-n} \Phi\left(\frac{x}{|u|}\right) f(u) d u
$$

Recent attempts

- Weisz: in a product space, not sharp.
- Dashan Fan and his collaborators: observing that in dimension one the Hausdorff operator \mathcal{H}_{ϕ} can be rewritten in a symmetric form

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \phi\left(\frac{x}{t}\right) \frac{f(t)}{t} d t, \quad x \in \mathbb{R}
$$

- they study the following multidimensional operator

$$
\int_{\mathbb{R}^{n}}|u|^{-n} \Phi\left(\frac{x}{|u|}\right) f(u) d u
$$

- There are many objections, the main one - it is not a Hausdorff operator!

Recent attempts

- Weisz: in a product space, not sharp.
- Dashan Fan and his collaborators: observing that in dimension one the Hausdorff operator \mathcal{H}_{ϕ} can be rewritten in a symmetric form

$$
\left(\mathcal{H}_{\phi} f\right)(x)=\int_{0}^{\infty} \phi\left(\frac{x}{t}\right) \frac{f(t)}{t} d t, \quad x \in \mathbb{R}
$$

- they study the following multidimensional operator

$$
\int_{\mathbb{R}^{n}}|u|^{-n} \Phi\left(\frac{x}{|u|}\right) f(u) d u
$$

- There are many objections, the main one - it is not a Hausdorff operator!

$$
\int_{\mathbb{R}^{n}}|u|^{-n} \Phi(u) f\left(\frac{x}{|u|}\right) d u
$$

is but indeed is not bounded in any $H^{p}\left(\mathbb{R}^{n}\right)$ with $p<1$.

More general operators

Before proceeding to the multivariate case, consider a somewhat more advanced one-dimensional version of the Hausdorff operator, apparently first introduced by Kuang:

$$
(\mathcal{H} f)(x)=\left(\mathcal{H}_{\varphi, a} f\right)(x)=\int_{\mathbb{R}_{+}} \frac{\varphi(t)}{a(t)} f\left(\frac{x}{a(t)}\right) d t
$$

where $a(t)>0$ and $a^{\prime}(t)>0$ for all $t \in \mathbb{R}_{+}$except maybe $t=0$.
Theorem E. Let $0<p<1, M=[1 / p-1 / 2]+1$, and let ϵ be a positive real number. Suppose φ is a function of class C^{M} on $(0, \infty)$ such that φ and a satisfy the compatibility condition

$$
\left|\left(\frac{1}{a^{\prime}(t)} \frac{d}{d t}\right)^{k} \frac{\varphi(t)}{a^{\prime}(t)}\right| \leqq \min \left\{|a(t)|^{\epsilon},|a(t)|^{-\epsilon}\right\}|a(t)|^{-1 / p-k}
$$

for $k=0,1, \ldots, M$. Then \mathcal{H}_{φ}, a is a bounded linear operator in H^{p}.

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.
- Let $N, n \in \mathbb{N}$, let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be given, where $M_{n}(\mathbb{R})$ denotes the class of all $n \times n$ real matrices.

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.
- Let $N, n \in \mathbb{N}$, let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be given, where $M_{n}(\mathbb{R})$ denotes the class of all $n \times n$ real matrices.
- Assuming the matrix $A(u)$ be nonsingular for almost every u with $\Phi(u) \neq 0$, we define $\mathcal{H}_{\Phi, A}$ by

$$
\left(\mathcal{H}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u)|\operatorname{det} A(u)|^{-1} f\left(x^{t} A(u)^{-1}\right) d u, \quad x \in \mathbb{R}^{n}
$$

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.
- Let $N, n \in \mathbb{N}$, let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be given, where $M_{n}(\mathbb{R})$ denotes the class of all $n \times n$ real matrices.
- Assuming the matrix $A(u)$ be nonsingular for almost every u with $\Phi(u) \neq 0$, we define $\mathcal{H}_{\Phi, A}$ by

$$
\left(\mathcal{H}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u)|\operatorname{det} A(u)|^{-1} f\left(x^{t} A(u)^{-1}\right) d u, \quad x \in \mathbb{R}^{n}
$$

- where ${ }^{t} A(u)^{-1}$ denotes the inverse of the transpose of the matrix $A(u)$, and $x^{t} A(u)^{-1}$ denotes the row n-vector obtained by multiplying the row n-vector x by the $n \times n$ matrix ${ }^{t} A(u)^{-1}$.

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.
- Let $N, n \in \mathbb{N}$, let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be given, where $M_{n}(\mathbb{R})$ denotes the class of all $n \times n$ real matrices.
- Assuming the matrix $A(u)$ be nonsingular for almost every u with $\Phi(u) \neq 0$, we define $\mathcal{H}_{\Phi, A}$ by

$$
\left(\mathcal{H}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u)|\operatorname{det} A(u)|^{-1} f\left(x^{t} A(u)^{-1}\right) d u, \quad x \in \mathbb{R}^{n}
$$

- where ${ }^{t} A(u)^{-1}$ denotes the inverse of the transpose of the matrix $A(u)$, and $x^{t} A(u)^{-1}$ denotes the row n-vector obtained by multiplying the row n-vector x by the $n \times n$ matrix ${ }^{t} A(u)^{-1}$.
- The Fourier transform of $\mathcal{H}_{\Phi, A} f$ is (formally) calculated from the definition as

$$
\begin{equation*}
\left(\mathcal{H}_{\Phi, A} f\right)^{\wedge}(\xi)=\int_{\mathbb{R}^{N}} \Phi(u) \widehat{f}(\xi A(u)) d u, \quad \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Multidimensional case

- We consider the operator $\mathcal{H}_{\Phi, A}$ defined as follows.
- Let $N, n \in \mathbb{N}$, let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be given, where $M_{n}(\mathbb{R})$ denotes the class of all $n \times n$ real matrices.
- Assuming the matrix $A(u)$ be nonsingular for almost every u with $\Phi(u) \neq 0$, we define $\mathcal{H}_{\Phi, A}$ by

$$
\left(\mathcal{H}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u)|\operatorname{det} A(u)|^{-1} f\left(x^{t} A(u)^{-1}\right) d u, \quad x \in \mathbb{R}^{n}
$$

- where ${ }^{t} A(u)^{-1}$ denotes the inverse of the transpose of the matrix $A(u)$, and $x^{t} A(u)^{-1}$ denotes the row n-vector obtained by multiplying the row n-vector x by the $n \times n$ matrix ${ }^{t} A(u)^{-1}$.
- The Fourier transform of $\mathcal{H}_{\Phi, A} f$ is (formally) calculated from the definition as

$$
\begin{equation*}
\left(\mathcal{H}_{\Phi, A} f\right)^{\wedge}(\xi)=\int_{\mathbb{R}^{N}} \Phi(u) \widehat{f}(\xi A(u)) d u, \quad \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

- To be precise, we have to put some conditions on Φ, A, and f so that $\mathcal{H}_{\Phi, A} f$ is well-defined and the formula (1) holds.

Definitions

We give preliminary argument concerning the definition of $\mathcal{H}_{\Phi, A}$ and formula (1).
For functions $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}, A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, consider

$$
\left(\mathcal{H}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u)|\operatorname{det} A(u)|^{-1} f\left(x^{t} A(u)^{-1}\right) d u, \quad x \in \mathbb{R}^{n}
$$

and

$$
\left(\tilde{\mathcal{H}}_{\Phi, A} f\right)(x)=\int_{\mathbb{R}^{N}} \Phi(u) f(x A(u)) d u, \quad x \in \mathbb{R}^{n}
$$

We always assume that Φ, A, and f are Borel measurable functions. Defining

$$
L_{A}(\Phi)=\int_{\mathbb{R}^{N}}|\Phi(u)||\operatorname{det} A(u)|^{-1 / 2} d u
$$

we have the following.

Definitions

Proposition. If $L_{A}(\Phi)<\infty$, then for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$ the functions $\mathcal{H}_{\Phi, A} f$ and $\widetilde{\mathcal{H}}_{\Phi, A} f$ are well-defined almost everywhere on \mathbb{R}^{n} and the inequalities

$$
\left\|\mathcal{H}_{\Phi, A} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq L_{A}(\Phi)\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

and

$$
\left\|\widetilde{\mathcal{H}}_{\Phi, A} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq L_{A}(\Phi)\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

hold. Thus $\mathcal{H}_{\Phi, A}$ and $\widetilde{\mathcal{H}}_{\Phi, A}$ are well-defined bounded operators in $L^{2}\left(\mathbb{R}^{n}\right)$ if $L_{A}(\Phi)<\infty$.

The next proposition gives the formula (1).
Proposition. If $L_{A}(\Phi)<\infty$, then $\left(\mathcal{H}_{\Phi, A} f\right)^{\wedge}=\widetilde{\mathcal{H}}_{\Phi, A} \widehat{f}$ for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

Guess

- On account of Theorems C and D, one may suppose that the multidimensional operator $\mathcal{H}_{\Phi, A}$ is bounded in $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1$, if one merely assumes Φ and A to be sufficiently smooth and Φ to be with compact support.

Guess

- On account of Theorems C and D, one may suppose that the multidimensional operator $\mathcal{H}_{\Phi, A}$ is bounded in $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1$, if one merely assumes Φ and A to be sufficiently smooth and Φ to be with compact support.
- However, this naive generalization of Theorem C is false. There are examples of smooth Φ with compact support and smooth A for which $\mathcal{H}_{\Phi, A}$ is not bounded in the Hardy space $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1, n \geq 2$.

Guess

- On account of Theorems C and D, one may suppose that the multidimensional operator $\mathcal{H}_{\Phi, A}$ is bounded in $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1$, if one merely assumes Φ and A to be sufficiently smooth and Φ to be with compact support.
- However, this naive generalization of Theorem C is false. There are examples of smooth Φ with compact support and smooth A for which $\mathcal{H}_{\Phi, A}$ is not bounded in the Hardy space $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1, n \geq 2$.
- This leads to conclusion that A, or Φ, or both of them should be subject to additional assumptions. The nature and type of such assumptions is, in a sense, the main issue, or, say, spirit of our work.

Guess

- On account of Theorems C and D, one may suppose that the multidimensional operator $\mathcal{H}_{\Phi, A}$ is bounded in $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1$, if one merely assumes Φ and A to be sufficiently smooth and Φ to be with compact support.
- However, this naive generalization of Theorem C is false. There are examples of smooth Φ with compact support and smooth A for which $\mathcal{H}_{\Phi, A}$ is not bounded in the Hardy space $H^{p}\left(\mathbb{R}^{n}\right), 0<p<1, n \geq 2$.
- This leads to conclusion that A, or Φ, or both of them should be subject to additional assumptions. The nature and type of such assumptions is, in a sense, the main issue, or, say, spirit of our work.
- Indeed, for positive results, we introduce an algebraic condition on A and prove the Hardy space boundedness of $\mathcal{H}_{\Phi, A}$. This is a generalization of Theorem C to the multidimensional case.

Multidimensional result

Theorem. Let $n \in \mathbb{N}, n \geq 2,0<p<1$, and $M=[n / p-n / 2]+1$. Let $N \in \mathbb{N}, \Phi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ be a function of class C^{M} with compact support, and $A: \mathbb{R}^{N} \rightarrow M_{n}(\mathbb{R})$ be a mapping of class C^{M+1}. Assume the matrix $A(u)$ is nonsingular for all $u \in \operatorname{supp} \Phi$. Also assume Φ and A satisfy the following condition:

$$
\left\{\begin{array}{l}
\text { for all }(u, y, \xi) \in \operatorname{supp} \Phi \times \Sigma^{n-1} \times \Sigma^{n-1} \tag{2}\\
\text { there exists a } j=j(u, y, \xi) \in\{1, \ldots, N\} \text { such that } \\
\left\langle y, \xi \frac{\partial A(u)}{\partial u_{j}}\right\rangle \neq 0
\end{array}\right.
$$

where $\Sigma=\Sigma^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. Then the operator $\mathcal{H}_{\Phi, A}$ is bounded in $H^{p}\left(\mathbb{R}^{n}\right)$.

Condition in dimension two

- $u=\left(u_{1}, u_{2}\right)$

$$
\begin{gathered}
\partial_{j}:=\frac{\partial}{\partial u_{j}} \quad j=1,2 \\
\frac{\partial A(u)}{\partial u_{j}}=\left(\begin{array}{ll}
\partial_{j} a_{11}(u) & \partial_{j} a_{12}(u) \\
\partial_{j} a_{21}(u) & \partial_{j} a_{22}(u)
\end{array}\right)
\end{gathered}
$$

Condition in dimension two

- $u=\left(u_{1}, u_{2}\right)$

$$
\begin{gathered}
\partial_{j}:=\frac{\partial}{\partial u_{j}} \quad j=1,2 \\
\frac{\partial A(u)}{\partial u_{j}}=\left(\begin{array}{cc}
\partial_{j} a_{11}(u) & \partial_{j} a_{12}(u) \\
\partial_{j} a_{21}(u) & \partial_{j} a_{22}(u)
\end{array}\right)
\end{gathered}
$$

- ($\cos y, \sin y)$ in place of y and $(\cos \xi, \sin \xi)$ in place of ξ

Condition in dimension two

- $u=\left(u_{1}, u_{2}\right) \quad \partial_{j}:=\frac{\partial}{\partial u_{j}} \quad j=1,2$

$$
\frac{\partial A(u)}{\partial u_{j}}=\left(\begin{array}{cc}
\partial_{j} a_{11}(u) & \partial_{j} a_{12}(u) \\
\partial_{j} a_{21}(u) & \partial_{j} a_{22}(u)
\end{array}\right)
$$

- ($\cos y, \sin y)$ in place of y and $(\cos \xi, \sin \xi)$ in place of ξ
- Condition: for some j

$$
\begin{aligned}
&\left\langle(\cos y, \sin y),(\cos \xi, \sin \xi) \frac{\partial A(u)}{\partial u_{j}}\right\rangle \\
&=\left\langle(\cos y, \sin y),\left(\cos \xi \partial_{j} a_{11}(u)+\sin \xi \partial_{j} a_{21}(u),\right.\right. \\
&\left.\left.\cos \xi \partial_{j} a_{12}(u)+\sin \xi \partial_{j} a_{22}(u)\right)\right\rangle \\
&=\cos y \cos \xi \partial_{j} a_{11}(u)+\cos y \sin \xi \partial_{j} a_{21}(u) \\
&+\sin y \cos \xi \partial_{j} a_{12}(u)+\sin y \sin \xi \partial_{j} a_{22}(u)
\end{aligned}
$$

Examples - unbounded

Example

Let Φ be a nonnegative smooth function on $(0, \infty)$ with compact support. Assume $\Phi(s)>1$ for $1<s<2$. Then, for $n \geq 2$ and $0<p<1$, the operator $(H f)(x)=\int_{0}^{\infty} \Phi(s) f(s x) d s, \quad x \in \mathbb{R}^{n}$, is not bounded in $H^{p}\left(\mathbb{R}^{n}\right)$.

Let $S O(n, \mathbb{R})$ be the Lie group of real $n \times n$ orthogonal matrices with determinant 1 and let μ be the Haar measure on $S O(n, \mathbb{R})$.

Example

For $n \geq 2$ and $0<p<1$, the operator

$$
(H f)(x)=\int_{S O(n, \mathbb{R})} f(x P) d \mu(P), \quad x \in \mathbb{R}^{n}
$$

is not bounded in $H^{p}\left(\mathbb{R}^{n}\right)$.

Example - bounded

Example below should be compared with the preceding examples; the difference is only more dimensions for averaging but the result is quite opposite.

Example

Let $n \in \mathbb{N}, n \geq 2,0<p<1$, and $M=[n / p-n / 2]+1$. Let $\Phi:(0, \infty) \times S O(n, \mathbb{R}) \rightarrow \mathbb{C}$ be a function of class C^{M} with compact support. Then the operator

$$
(H f)(x)=\int_{(0, \infty) \times S O(n, \mathbb{R})} \Phi(s, P) f(s x P) d s d \mu(P), \quad x \in \mathbb{R}^{n}
$$

is bounded in $H^{p}\left(\mathbb{R}^{n}\right)$.

Dimensions

We give some remarks concerning the number N in the condition (2). To simplify notation, we write $B_{j}=\frac{\partial A(u)}{\partial u_{j}}$. Thus B_{1}, \ldots, B_{N} are $n \times n$ real matrices.

Dimensions

We give some remarks concerning the number N in the condition (2). To simplify notation, we write $B_{j}=\frac{\partial A(u)}{\partial u_{j}}$. Thus B_{1}, \ldots, B_{N} are $n \times n$ real matrices.

- We consider the following condition:

$$
\left\{\begin{array}{l}
\text { for all }(y, \xi) \in \Sigma^{n-1} \times \Sigma^{n-1}, \text { there exists a } j \in\{1, \ldots, N\} \tag{3}\\
\text { such that }\left\langle y, \xi B_{j}\right\rangle \neq 0 .
\end{array}\right.
$$

Dimensions

We give some remarks concerning the number N in the condition (2). To simplify notation, we write $B_{j}=\frac{\partial A(u)}{\partial u_{j}}$. Thus B_{1}, \ldots, B_{N} are $n \times n$ real matrices.

- We consider the following condition:

$$
\left\{\begin{array}{l}
\text { for all }(y, \xi) \in \Sigma^{n-1} \times \Sigma^{n-1}, \text { there exists a } j \in\{1, \ldots, N\} \tag{3}\\
\text { such that }\left\langle y, \xi B_{j}\right\rangle \neq 0 .
\end{array}\right.
$$

- We shall say that (3) is possible if there exist $B_{1}, \ldots, B_{N} \in M_{n}(\mathbb{R})$ which satisfy (3).

Dimensions

We give some remarks concerning the number N in the condition (2). To simplify notation, we write $B_{j}=\frac{\partial A(u)}{\partial u_{j}}$. Thus B_{1}, \ldots, B_{N} are $n \times n$ real matrices.

- We consider the following condition:

$$
\left\{\begin{array}{l}
\text { for all }(y, \xi) \in \Sigma^{n-1} \times \Sigma^{n-1}, \text { there exists a } j \in\{1, \ldots, N\} \tag{3}\\
\text { such that }\left\langle y, \xi B_{j}\right\rangle \neq 0
\end{array}\right.
$$

- We shall say that (3) is possible if there exist $B_{1}, \ldots, B_{N} \in M_{n}(\mathbb{R})$ which satisfy (3).
- The following statement is valid.

Proposition. (1) The condition (3) is possible only if $N \geq n$.
(2) If n is odd and $n \geq 3$, then (3) is possible only if $N \geq n+1$.
(3) For all $n \geq 2$, the condition (3) is possible with $N=1+n(n-1) / 2$. If $n \geq 4$, then (3) is possible with an $N<1+n(n-1) / 2$.

Bibliography

E. Chen, D. Fan and S. Wang, Hausdorff Operators on Euclidean Spaces, Appl. Math. J. Chinese Univ. (Ser. B) (4) 28 (2014), 548-564.
J. Chen, D. Fan, X. Lin, and J. Ruan, The fractional Hausdorff operators on the Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$, Analysis Math., 42 (1) (2016), 1-17.
Y. Kanjin, The Hausdorff operators on the real Hardy spaces $H^{p}(\mathbb{R})$, Studia Math. 148 (2001), 37-45.
A. Lerner and E. Liflyand, Multidimensional Hausdorff operators on the real Hardy space, J. Austr. Math. Soc. 83 (2007), 79-86.
E. Liflyand, Boundedness of multidimensional Hausdorff operators on $H^{1}\left(\mathbb{R}^{n}\right)$, Acta. Sci. Math. (Szeged) 74 (2008), 845-851.
E. Liflyand, Hausdorff Operators on Hardy Spaces, Eurasian Math. J. 4 (2013), no. 4, 101-141.

Bibliography

E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^{1}(\mathbb{R})$, Proc. AMS 128 (2000), 1391-1396.
E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in H^{p} spaces, $0<p<1$, Studia Math. 194(3) (2009), 279-292.
E. Liflyand and A. Miyachi, Boundedness of multidimensional Hausdorff operators in H^{p} spaces, $0<p<1$, to appear in the Trans. Amer. Math. Soc.
甬 A. Miyachi, Weak factorization of distributions in H^{p} spaces, Pacific J. Math. 115 (1984), 165-175.
(i) A. Miyachi, Boundedness of the Cesàro operator in Hardy Spaces, J. Fourier Anal. Appl. 10 (2004), 83-92.
F. Weisz, The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces, Analysis 24 (2004), 183-195.

